Temperature gradient-induced magnetization reversal of single ferromagnetic nanowires
نویسندگان
چکیده
منابع مشابه
Observation of temperature-gradient-induced magnetization
Applying magnetic fields has been the method of choice to magnetize non-magnetic materials, but they are difficult to focus. The magneto-electric effect and voltage-induced magnetization generate magnetization by applied electric fields, but only in special compounds or heterostructures. Here we demonstrate that a simple metal such as gold can be magnetized by a temperature gradient or magnetic...
متن کاملSpin-current-induced magnetization reversal in magnetic nanowires with constrictions
We have performed experiments on current-induced domain-wall motion sCIDWMd in the case of the domain walls sDWd trapped within the nanoscale constrictions in patterned NiFe structures. Direct observation of current-induced magnetization reversal was achieved and critical current densities jc were measured in the presence of easy-axis magnetic fields. The direction of CIDWM was found to be alon...
متن کاملA theory of magnetization reversal in nanowires
Magnetization reversal in a ferromagnetic nanowire which is much narrower than the exchange length is believed to be accomplished through the thermally activated growth of a spatially localized nucleus, which initially occupies a small fraction of the total volume. To date, the most detailed theoretical treatments of reversal as a field-induced but noise-activated process have focused on the ca...
متن کاملModelling of magnetization reversal for long ferromagnetic nanotubes
The theory of infinite tube magnetization reversal, formulated by Lee and Chang, has been reconsidered. For this purpose, a standard micromagnetic simulation package OOMMF was used. To account for elongated geometry of ferromagnetic nanotubes grown nowadays, an extension module has been written allowing application of periodic boundary conditions in one dimension. The results of the modelling e...
متن کاملElectrical manipulation of magnetization reversal in a ferromagnetic semiconductor.
We report electrical manipulation of magnetization processes in a ferromagnetic semiconductor, in which low-density carriers are responsible for the ferromagnetic interaction. The coercive force HC at which magnetization reversal occurs can be manipulated by modifying the carrier density through application of electric fields in a gated structure. Electrically assisted magnetization reversal, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics D: Applied Physics
سال: 2017
ISSN: 0022-3727,1361-6463
DOI: 10.1088/1361-6463/aa9444